Plot species richness in environmental and geographical space
Source:R/plot_envpam.R
      lets.plot.envpam.RdThis function plots species richness in both environmental and geographical space
based on the output of lets.envpam. It can optionally highlight species
distributions, individual cells, or regions in both spaces.
Usage
lets.plot.envpam(
  x,
  species = NULL,
  cell_id_env = NULL,
  cell_id_geo = NULL,
  geo_plot = TRUE,
  env_plot = TRUE,
  world = TRUE,
  rast_return = FALSE,
  col_rich = NULL,
  ...
)Arguments
- x
 The output object from
lets.envpam).- species
 A character string indicating the species name to be highlighted in both plots.
- cell_id_env
 An integer or vector of integers indicating environmental space cell(s) to be highlighted.
- cell_id_geo
 An integer or vector of integers indicating geographic cell(s) to be highlighted.
- geo_plot
 Logical. Should the geographic richness map also be plotted? Default is TRUE.
- env_plot
 Logical. Should the environmental space richness map also be plotted? Default is TRUE.
- world
 Logical. If TRUE, plots a base map using the `wrld_simpl` object from the `letsR` package over the geographic raster.
- rast_return
 Logical. If TRUE, returns the modified raster objects instead of plotting.
- col_rich
 A custom color ramp palette function to use for plotting richness (e.g., from
colorRampPalette).- ...
 Additional arguments passed to the
plotfunction for rasters.
Details
This function provides a visual summary of species richness across both geographic and environmental dimensions. Users can highlight specific species or environmental/geographical cells. When a highlight is selected, both rasters are modified to display only presences related to the selected species or cells, and all other cells are greyed out.
Examples
if (FALSE) { # \dontrun{
# Load data
data("Phyllomedusa")
data("prec")
data("temp")
prec <- unwrap(prec)
temp <- unwrap(temp)
PAM <- lets.presab(Phyllomedusa, remove.cells = FALSE)
envs <- lets.addvar(PAM, c(temp, prec), onlyvar = TRUE)
colnames(envs) <- c("Temperature", "Preciptation")
wrld_simpl <- get(utils::data("wrld_simpl", package = "letsR"))
PAM <- lets.pamcrop(PAM, vect(wrld_simpl))
# Create environmental PAM
res <- lets.envpam(PAM, envs)
# Plot both spaces
lets.plot.envpam(x = res,
            species = NULL,
            cell_id_env = NULL,
            cell_id_geo = NULL,
            geo_plot = TRUE,
            world = TRUE,
            mar = c(4, 4, 4, 4))
# Highlight a single species
lets.plot.envpam(res, species = "Phyllomedusa_atlantica")
} # }