Computes the Moran's I correlogram of a single or multiple variables.
Arguments
- x
A single numeric variable in vector format or multiple variables in matrix format (as columns).
- y
A distance matrix of class
matrix
ordist
.- z
The number of distance classes to use in the correlogram.
- equidistant
Logical, if
TRUE
the classes will be equidistant. IfFALSE
the classes will have equal number of observations.- plot
Logical, if
TRUE
the correlogram will be ploted.
Value
Returns a matrix with the Moran's I Observed value, Confidence Interval (95 and Expected value. Also the p value of the randomization test, the mean distance between classes, and the number of observations. quase tudo
References
Sokal, R.R. & Oden, N.L. (1978) Spatial autocorrelation in biology. 1. Methodology. Biological Journal of the Linnean Society, 10, 199-228.
Sokal, R.R. & Oden, N.L. (1978) Spatial autocorrelation in biology. 2. Some biological implications and four applications of evolutionary and ecological interest. Biological Journal of the Linnean Society, 10, 229-249.
Examples
if (FALSE) { # \dontrun{
data(PAM)
data(IUCN)
# Spatial autocorrelation in description year (species level)
midpoint <- lets.midpoint(PAM)
distan <- lets.distmat(midpoint[, 2:3])
moran <- lets.correl(IUCN$Description, distan, 12,
equidistant = FALSE,
plot = TRUE)
} # }